KARL A. GSCHNEIDNER, JR.

this reason no further discussion is warranted here. The symbol θ_{298}^{I} is used herein to represent the Debye temperature determined from X-ray or neutron diffraction intensity data. The subscript refers to the temperature at which the experimental data were obtained. It should be noted that the experimentally measured θ^{Ie} value is not directly comparable with θ^{S} , because these two quantities are defined differently.^{96,111} Zener and Bilinsky¹¹¹ showed that the ratio of θ^{Ie}/θ^{S} can be expressed as a function of Poisson's ratio; thus, from the known Poisson's ratio (Table III) of the material whose θ^{Ie} has been experimentally determined, one can calculate the θ^{I} value which should be compared with θ^{S} . All of the values given in Tables XVII and XVIII are θ^{I} values; that is, the experimental values θ^{Ie} have been converted to θ^{I} by the method of Zener and Bilinsky.

The θ_{298}^{I} values for 17 elements are listed in Table XVII and are compared with θ_{298}^{S} in Table XVIII. It is seen that the θ_{298}^{I} values range from a minimum of 67 °K for lead to a maximum of 1730 °K for diamond. Examination of the ratio of $\theta_{298}^{I}/\theta_{298}^{IS}$ in Table XVIII indicates that only 47% of the θ_{298}^{I} values lie within $\pm 10\%$ of the corresponding θ_{298}^{IS} , and that about 70% lie within $\pm 25\%$. Thus the agreement between θ_{298}^{I} and θ_{298}^{S} is poor. Furthermore, θ_{298}^{I} is less than θ_{298}^{S} for about 82% of the elements. Since, as noted earlier, $\theta_{298}^{IS} = \theta_{298}^{IS}$ (i.e., approximately equal numbers of values of θ_{298}^{IS} are larger and smaller than θ_{298}^{IS} . This is in agreement with the observations of Blackman⁹³ and Herbstein.⁹⁶

IX. Some Interrelationships and Derived Properties

22. RATIO OF YOUNG'S MODULUS TO THE SHEAR MODULUS

The ratio of Young's modulus to the shear modulus, Y/μ , is essentially a constant for all materials. This is quite easily seen from Eq. (II.1) or (5.1), which show that Y/μ is related to Poisson's ratio. Since Poisson's ratio is practically a constant, equal to 0.301 (see Section 5), we find $Y/\mu = 2.604$ from Eq. (5.1). Furthermore, since Poisson's ratio can only have values between 0 and 0.5, the minimum value for Y/μ is 2.0 and the maximum is 3.0. Poisson's ratio is usually measured directly and not calculated from the two moduli; thus the interrelationships, as given by Eq. (II.1) or (5.1), among the three quantities serve as a check on the consistency of the three measured values.

The Y/μ ratios, which are listed in Table XIX, were calculated from

111 C. Zener and S. Bilinsky, Phys. Rev. 50, 101 (1936).

PHYSICAL PROPERTIES AND INTERRELATIONSHIPS

TABLE XIX. RATIO OF YOUNG'S MODULUS TO THE SHEAR MODULUS

Element	Y/μ	Element	Y/μ	Element	Υ/μ
3 Li	2.72	38 Sr	(2.71) ^a	65 Tb	2.52
4 Be	2.08	39 Y	2.51	66 Dy	2.49
5 B	2.17	40 Zr	2.70	67 Ho	2.52
6 C(g)	2.56	41 Nb	2.80	68 Er	2.48
6 C(d)	2.50	42 Mo	2.83	69 Tm	(2.48)ª
11 Na	2.61	43 Tc	$(2.59)^{a}$	70 Yb	2.56
12 Mg	2.55	44 Ru	2.58	71 Lu	(2.50)ª
13 Al	2.67	45 Rh	2.53	72 Hf	2.59
14 Si	2.59	46 Pd	2.42	73 Ta	2.64
15 P(w, r, b)	(2.67)ª	47 Ag	2.82	74 W	2.60
16 S(r)	2.69	48 Cd	2.58	75 Re	2.58
19 K	2.78	49 In	2.82	76 Os	(2.57)ª
20 Ca	2.67	50 Sn(g)	2.84	77 Ir	2.51
21 Sc	(2.54)ª	50 Sn(w)	2.64	78 Pt	2.80
22 Ti	2.69	51 Sb	2.74	79 Au	2.83
23 V	2.83	52 Te	2.68	80 Hg	2.74
24 Cr	2.08	55 Cs	(2.71)ª	81 TI	2.89
25 Mn	2.59	56 Ba	2.58	82 Pb	2.91
26 Fe	2.58	57 La	2.55	83 Bi	2.66
27 Co	2.70	58 Ce(a)	2.31	84 Po	(2.68)ª
28 Ni	2.58	58 $Ce(\gamma)$	2.51	87 Fr	$(2.71)^{a}$
29 Cu	2.74	59 Pr	2.41	88 Ra	(2.61)ª
30 Zn	2.48	60 Nd	2.62	89 Ac	(2.54)ª
31 Ga	2.47	61 Pm	(2.53)ª	90 Th	2.68
32 Ge	2.52	62 Sm	2.70	91 Pa	$(2.56)^{a}$
33 As	(2.67)ª	63 Eu	(2.58)ª	92 U	2.53
34 Se	(2.68) ^a	64 Gd	2.52	93 Np	$(2.51)^{a}$
37 Rb	(2.71)ª			94 Pu	2.21

^a Estimated value; see text for further discussion.

the values of Y and μ given in Tables I and II, respectively. The mean value for all of the experimental data is 2.60 \pm 0.17, which is identical to that calculated from the mean value of Poisson's ratio. The error, \pm 0.17, corresponds to a percentage error of \pm 6.5, which is misleadingly small. If Poisson's ratio and the corresponding error were to be calculated from the above numbers, it would be found that $\sigma = 0.300 \pm 0.080$. This error is equivalent to a percentage error of \pm 26.7. The ratio Y/μ varies from a minimum of 2.08 for beryllium and chromium to a maximum of 2.91 for lead, and lies within the minimum and maximum theoretical limits, 2.0 and 3.0.

388

389